sgwt_adjoint : Compute adjoint of sgw transform function adj=sgwt_inverse(y,L,c,arange) Inputs: y - sgwt coefficients L - laplacian c - cell array of Chebyshev coefficients defining transform arange - spectral approximation range Outputs: adj - computed sgwt adjoint applied to y
0001 % sgwt_adjoint : Compute adjoint of sgw transform 0002 % 0003 % function adj=sgwt_inverse(y,L,c,arange) 0004 % 0005 % Inputs: 0006 % y - sgwt coefficients 0007 % L - laplacian 0008 % c - cell array of Chebyshev coefficients defining transform 0009 % arange - spectral approximation range 0010 % 0011 % Outputs: 0012 % adj - computed sgwt adjoint applied to y 0013 0014 % This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox) 0015 % Copyright (C) 2010, David K. Hammond. 0016 % 0017 % The SGWT toolbox is free software: you can redistribute it and/or modify 0018 % it under the terms of the GNU General Public License as published by 0019 % the Free Software Foundation, either version 3 of the License, or 0020 % (at your option) any later version. 0021 % 0022 % The SGWT toolbox is distributed in the hope that it will be useful, 0023 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0024 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0025 % GNU General Public License for more details. 0026 % 0027 % You should have received a copy of the GNU General Public License 0028 % along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>. 0029 0030 function adj=sgwt_adjoint(y,L,c,arange) 0031 0032 assert(iscell(c)); 0033 N=size(L,1); 0034 % first compute adj = W^*y ( sort of slowly ) 0035 adj=zeros(N,1); 0036 %fprintf('computing adjoint\n'); 0037 for j=1:numel(c) 0038 tmp=sgwt_cheby_op(y{j},L,c{j},arange); 0039 adj=adj+tmp; 0040 end 0041